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TOWARD A GENERAL THEORY OF ELAYTIC EQUILIBRIUM EQUATIONS FOR
AN ISOTR$PIC BODY

Orazid Tedone

Génoa
I —

ABSTRACT. The elastic equilibrium problem for bodies
limited by planes and spheres is treated using the theory
of Green's functions and harmonic functions for the case
of given stresses and displacements on the boundary, as
well as for the mixed problem.

REPORT IT

(Bodies Limited by Two Parallel Planes or Two Concentric Spheres)

I. Problems in Which the Elastic Body is Limited by Two Parallel
Planes**

1. Green Functions and Harmonic Functions. Let us assume that the two
planes limiting the elastic body are the two planes z = 0 and z = h, which we

will indicate by o1 and Tps respectively, while we will continue to denote the

combination of 9 and 9, by . The portion of space limited by them also re-

tains its notation, S.

If A= (x, y, 2) is a point in S -~ i.e., such that 0 < z < h —- let us
consider the infinite series of points:

Ady=(, y, —2), di=(z, y, 2h - 2), dy=(z, y, ——2h—z),...,.
A,,._(a:, Y, 2nh+z), A,,.+._(r, Y, —2nh—-z),...~
A =(z, y, 2h—z2), Ay=(2, y, —2h + 2), d'y==(z, y, 4h—z),...,
Ay =(z, ¥, 2nh—-ﬂ,A,n_4x,y,~—2nh +2),...

which are the two series of successive images of point A with respect to the
two planes 9 and Tos the images being all located outside of S, except Al’

which may fall with A on plane 0y and Ai, which may fall with A on plane Ope

Let us call
iy P2y Fageeny Tony  Tanpggees

* Numbers in the margin indicate pagination in the original foreign text.

*% In this second report on elastic equilibrium equations for an isotropic
body, just as in those which may still follow it, we will continue to apply
the prinicples established in the first report. Every time it becomes neces-
sary to refer to the results established in that report, we will add the in-
dicator (I) to the citation.
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° |
the relative distances of each of these points from the same point (£, n, )
in S, and let us continue to call r the distance from this point (£, n, ) to
A. When the point (£, n, ¢) falls on gys We will have

of ’ " ’
? 1) rl’ ’3,--.’ r,,,-‘, r',”,...

Y =y Ps =3, c00y Tan = Fantrge0,
’ |

’ 4 4 !
r,—/—r,, 7”:,:"4_';---) rm—tz"'!n)'“’ [

wherever A may be in S, while when point (§, n, ¢) falls on o, we will have
|
r“:_—"‘r,, r,:r"..., "g?;—|="zn”.o.’ ~

y ot ’ 4 o l__.’
Y=~y rs="%35:0. en =1 ant1y..- \

Thus when point (&, n; ) is fixed somewhere in S, we have
|

’ PR
’o‘—'_—_,"’ "121."’ rs:,-”...’ Y —1 n-;?-.., .

when A is chosen on 01, while when A is chosen on 0, we have

1’:1",, 1",:1',, 1",=",,..., r'”zrn_.‘,...

fon £ > ( o —— - -1
In the space region ¢ > 0 the function 70 Tondl

pendent on &, n, Z, is harmonic if it becomes zero at infinity on plane O

, assumed to be de-

while it becomes infinitely large and positive when point (£, n, %) falls in
A2n’ which belongs to this portion of space. From this we obtain in the

region under consideration, ¢ > 0, and hence also in S

1 1-

=0,
Tan int1

for which the series
(L _1 (Ao =S(E -4
g—(;;_;)—*_ :—_1'5)4_ —‘idn Ten Tt ’

assumed to be dependent on £, n, ¢z, is a series of harmonic functions, regular
in S and all positive, except on plane oq and at infinity where they become

(1

zero. On 01, series g 1is identically zero, while on 02 it is reduced to
/15
1 - 1 =

2 Thus, based on the theorems of Volterra and of Harnack, g is a series

converging absolutely and to an equal degree in S and representing a harmonic
and regular function in this region and also in a wider region. 1In the same
field, g is differentiable term by term any number of times, and the derivative
series are also harmonic and regular functions.

The series
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re rs,

have similar properties. This becomes zero identically on 0y, while it be-

1
comes equal to-?ri on Jq.
2



Green's function G relative to space S and to point A inside § is there-
fore

11 L I :
G==—— — ¢ = ———
+€~’,,(‘ _L,4.§= (-1___ 1),
. T‘ rn rentf ‘T‘n r'2n P entt .
For the normal derivative of G, we will have on o1
G z il 2nh+z Onh--z o
— - \‘, —— e e————— ot ' P
(a : );;o 2 [ 1‘3. + ‘1" ' ( f:}n "':n—t )Lzo ’ C (4)

-al 1 .A' 1 . ) \ 1
.___‘)[_a_z_*_ s ( ;’:+0r"":)L . \ E
_,—, “la: T ¢\ 92 T iz o : _

(2n-—l)h+z)1 ‘___" v
':’l— o

N ran rin—i . (‘ .
"[_1_ (~-1_ a'l)‘ \\ 0
e T e T L. o hy

Therefore, if ¢ is a harmonic function regular in S and becomes zero in
points at infinity in S with a higher order than 1 | and point A is inside S,
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the value of function ¢ at point A may be represented by formula

2-@:”- [ _Jf_:"(?"’:‘{‘w 21:1&—2\)]‘1 + \

Fen | ,n—l
O i
C [ — h—z (2n—l)h+z .
o[t—2 S ((2 n+1) ) ‘}
+J . l r3 + ‘1-‘ r in T’n—n d
' 1 - . . - (5)
J— _‘ [ T + “: (a 1_-!»1 a r'li—l ]d'_ +
- 1 " 0z J i s
(;]_"'”,—l‘wl N
m th—1 )
+J’ ‘t‘ H" + 92 .dﬂ'. . o . } .
Noting that —- 51nce there ‘are two serles of harmonlc and regular functions

in S

S'nf (211’1:—%2_ 214’h-z)da,‘
,n

3
r n—1i

{'; ¢((2n+l)h—z (2n-—l)h+z)d°,

—d’t T
1 ran . 1‘;’:&-1 ,
L : . - - . . ]



converging to an equal degree on o, and Tps and therefore in S -- term by term

1
integration is permissible in expression (5), we may also write

2= (I)—"(p d4+2,n q)(Zu:z:j—z ' 2n:¢n:z)d " . \

((2n+1)h—-z (211—1)h+z)d

) r,n . - f'n—t

|

=1

o

_—:_—EJ-?d Z"(athu _+3z_[rm—gd )+ ’ \

+azf da+z"(3z,"n i +Qz ;—;.:d.) ! '}‘

It is conversely also easy to demonstrate that whatever are the values
assigned to ¢ on o1 and s provided that they form finite and continuous func-—

tions of the points in these two planes and are such that p &, p = V(x - §)2 + /17

+ (y - N2, becomes zero in points at infinity in o, and o0,, expression (5) or
(5') defines a function of point A which is harmonic and regular inside S and
tends toward the assigned values in the points in o. And in fact if ¢ satisfies
the preceding assumptions, each of the terms in expression (5') is finite,
wherever A may be in S, and represents a harmonious and regular function inside
S. The two series

da,

J‘ (2nh+z‘ 2nh-——z\

3
Tyn r :n.-l.

J-‘l’ (2n+l)h—z (2u--1)h+z)d7 |

:" f:n—l ’

converge in equal degree on o1 and To3 hence they and function ¢ defined by

expression (5') are harmonic and regular functions inside S. 1If it is observed

that - - _ _ e }
]va@(n z 2ash—z 5 —0 |
:LO -1" ' f;at r’:n—t , dz=0 ’
llmlfq,h \ J' ((2"4-1)’!-—" (291——1)h+z _
1‘ r'in ,u—x de
Gy .
we have

and therefore & in the points in o, tends toward the assigned values. The same

1
may be said for the points in 0y. In short, the two series
] (2nh+z 2nh+z)
i - 73 .
] f:u ran—t [g=e |



}"‘jn((?n-l—1)h—z_(2n—l)h+z

g ’
r ;n . ':z'!-l =h

1

considered as dependent on x, y, z are convergent to an equal degree on o and

Tos and therefore also inasmuch as their terms from a certain moment onward

(when A, always included in S, is sufficiently distant) are positive and less
than the terms of the respective series

Y & 1 - ' < 1
22‘:‘"-.,— ’ 2('!'-—2) :‘n 3
1 T 1 Tan _

and since these converge and become zero in points at infinity in 9 and in
0y, at least like %—, the integrals which appear in expression (5) are also /18

finite and represent harmonic and regular functions in S. Since term by term
integration is permitted in expression (5), ¢ may also be represented by ex-
pression (5).

The analytical expressions obtained for ¢ could also have been derived by
applying Schwarz's alternate procedure. The terms containing integrals ex-

tended over 0, are in fact the successive reflections on planes 0y and 0y of

the harmonic and regular function in region ¢ > 0, which in 0, assumes the

values assigned to ¢ in this plane. And the same may be said of the terms
which contain integrals extended over Tye

2. As a consequence of the absolute and uniform convergence of series g
in S the absolute and uniform convergence of series

LI I
S

e

e - Tintg

is likewise deduced. 5, considered in S as dependent on &, n, 7, possesses
properties similar to those of g. It becomes zero identically on 91 while

on ¢, it is reduced to

2 P R IS S

re 3 s IR ] T T2 . ‘5‘ Yants Pants

Instead, the normal derivative of g on oy becomes

g 2 2nk
) (5—7;);=.:—2 }l‘n (__l)n n ‘+ z,

Tin
_]_,_ :
while on 9y it is reduced to ( r') « Similarly, from the convergence of
BRIy

series
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rs T 2n ¥ n—q

whose convergence is absolute and of equal degree in S, the absolute and equal-
degree convergence of series

ISl M
riu.‘—l
is derived. This series possesses properties like those of g’ in S -~ on 51

. 1 .
it reduces to g o while on gy it reduces to

2 2 2 2 1 1 )
= T ! —_— - 4 .o = n Q _ M
(7' 2 "4 ) R (I' [} T ) ' 2 ‘(')‘ ()' ots et
Instead, for the normal derivative g' we find that on o it reduces to
a; ;:—2h+z < —2nh+z
(3 7;,);=o— 3 o 2 "‘" (_— 1)“ :n—x ’ }
while on 9y it is identically zero. Hence, function
~_ 1 11 = -, (8)
G=r—nTrm—9—9 ‘

becomes zero identically on 9 2

becomes zero identically. G is therefore the Green function which solves the
problem of determining the function which is harmonic and regular in S and
such that it assumes given values on 01s while its normal derivative assumes

, while on o, it is the normal derivative which

given values on 02. Its analytic expression will be given by

— — © 2ah + 204 h -} 2 o
21;(1):le[»23+ ;‘n( H "-—n—l—-—z _‘u(——l)"——‘_——*_—] + [

¥ 7.ln ¥ an—t ‘
- ' . S |
aofl 1,2 (1 1 ) 2 ( 11 )] s i
,+J‘ —3’{ [-I_' - 1_1_ + ‘f)"n (1'An+3 Yénts _Upz r d:1+. "'4('»x+l) ds=
" fede 3 . | @
2 (=do d (527 % _1p.2 (5.2
:-——a-z-J-q) r n(—— 1)"22 12,1 _l,_‘n( l) az q’f.zn—l M 1
'B;Ada ev do % ( o dc X d' .
+ _3—7,7 T—I—a.f -'_l+T’)‘" 37 Nuﬂ d, ’ln-i-s
oy a0y o, o o .
‘ - (20 do [0 de).
e T e T ) ] i
o ) LA . .



3. To determine the analytic expression of the harmonic function whose
normal derivative assumes given values on o, and o

1 29 let us start from formula
(5), which we will be able to write as /20
. 2 1 INECAC R R
J— e —— [ 5 —— ]} \"_ - d LI
21-(]' J.q) ("“"azl'z,a)d f (‘f‘"azi'm—lJ ¢
. o X
o o i
0 f S0 ) ‘ rJ > 01 ) ,
+5_ «p__*_J«I (‘1‘ ¥ da —i—' ) RITY da. {
ay . .
In the series which appear under the integrals, it is not permissible to
reverse the summation sign and the derivative sign, because the series
Zn r%n ... are divergent. Let us note, however, that for the Mittag-Leffler
1
theorem extended to the harmonic functions of Professor Appell*, the series
21 1 © (1 1") ‘
‘?‘ ()2,1‘ 2nh)" 2,‘"(1":;;-. 2nh_ ? 1
(1 1 & (1 1 ‘) :
(), v (2 ) !
“,‘n (1"2,1 2n h), ‘1‘1(1’m-—1 2n h |
are absolutely convergent and in equal degree, except in the points in which
some r become zero, for which —- noting that in space S none of the r's which
appear in this series become zero -- we may write
T RN L N |
azlhl ‘1" ] Fan _2"’1 7l Fea 2_” I '
and therefore
8 o 1 1 S
o gl fodBfelis)e
°°.. 1 : (')
‘——\n P # o [
‘f‘f (r'm—( 2nh)d°+ ""Iq) (; 2 nh).d°+ |
1 1 o
by e — . :
+ nj ()m-—l 2nkh t o /1
ay i . - . ;
From this formula it may be dedquced that the function which is harmonic
and regular in S 21

1 72)11 2"’1
B

feds 1 1 < 1
J— — NV el = P —
‘ b r ™ " b (rzu 2n I:) do — 2 (p( d ¢ ' (10)

* '"On the Functions of Three Real Variables...," Acta Matematica, Vol. &4
p. 326.



_ q,._ _°\°‘,, 11 .
f - (1)(, n 2;1/:) ""fq)(n, ‘_—2—;:7[)(17 } (10)

is such that its normal derivative acquires the given values of 2 m ¢ in ¢

1
and o

¢
Expression (10) also shows that a function harmonic and regular in S may
always be put in the form of a derivative with respect to 2z of a function also
harmonic and regular in S.

4, Let us now add the following considerations, which we will use con-
stantly in the following. Let us recall that any function which is harmonic
and regular in the region z > 0 is representable by means of a series of the
form

. o R .
N |e? [am (7) cos ma -+ b (7) sent «] I (7 p)d 7 (*) (11)

[

which is absolutely and uniformly convergent in that region, where p, w, z is
a system of cylindrical coordinates; Jm’ the Bessel function of the first kind

and of order m; am(y), bm(y), two functions of y; and m, a positive whole

number which can vary from zero to + «, Conversely, any series like expression
(11) represents a harmonic and regular function in the region z > 0 which be-
comes zero for z = + », We have assumed that the region is the one determined
by inequality z > O, but it is clear that the same holds true in any region
limited by a plane.

More generally, any function which is harmonic and regular in region S,
i.e., 0 < z < h, is representable by means of an expression of form

‘o . )
.EmJ e [a, () cosmw + b, (y)sen mw] Ju (y p)d y + :
R - S B o (12)

+ EmJ e-1h-2) [{l_n, (y) cosm o + b (7) sen m w] J,, ( / p)dy

R

the two series being absolutely and uniformly convergent in this field, and
vice versa, as above.

This last result may be easily deduced from expression (5) by developing /22
the individual terms in accord with formula (11) and summing with respect to
n.

Finally, let us observe that, if an expression like expression (12) is

* Heine, Handb. der Kugelf. (Manual of Spherical Functions), Vol. 2, p. 189,
** Sen is correctly sin in English terminology.




identically zero in S, the functions am(y), bm(y); Em(y), Em(y) must be zero.

5. Case in which u, v, w are given on the two limiting planes. Let us
assume that the values of u, v, w given on ¢ are such by nature that the results
of the preceding sections and formulas (5) or (5') and similar formulas from
Report I may be applied. If we then designate by U, V, W the functions harmonic

and regular in S which on 6. acquire, respectively, the given values u, v, w,
for the formulas just cited we will have

+u

ule

a [0 da+,.,,(2;zh+é)5‘2f

71(2”’[--—2)—f 9

da+(h~z)éz — +

)2n -t

_,n [(2n+ 1) Il—zj 3

v - a .
—S.qen +z] Z’—xfr:,.-t ds},

0
4ﬁ."-‘{23_y *dc-r_,u(2nlz+z)a ’—(la_

o | (13)
v P 0 /
— X @nl—2) ,2,,-.0’ +<h—z)af do+

o

+}=;n[(2n+ 1) h—.2] a._ __,__d»_._

yJ 1

—Sqen— l)'h‘+ 2 ai g 'dok,

T2n—y

— ___l-!—y.' l+y.
e h[azf o

' ”l Prn—1

g e+ S .-_d,]. - '.

P en—q

—_ {) p— 0 . .
?0*f da; ?n~—-J';2—ud0‘, ?"n—’*[—’—‘d?, (14)

]
- — .

?’°:J %dc, 7',.:';2—110: en = [,’;T_‘d

we will also be able to write more briefly

=0 %14_1_?}_‘,1.[(21171+z)aa:+(2nh+h 2%, } 13"




V—V-{— + a,z[(2nll

"'J

&)

w:W—_: 6+7+l"] a n . (13")
b -
] +x a

. 0*2—-4”3 (9’!_Tn)

The problem which we have proposed will apparently be solved if we succeed
in determining functions ¢ so that: (1) equation
v By  dw
6= 2_.1: 4‘ + 7z (15)
is identically satisfied in S; (2) in the same region S and on o the values ¢
and their first derivatives are finite; (3) the values of ¢ themselves are

harmonic and regular in S; (4) for z = 0:
|

while for z = h: Fo=t-r 9 =g 9'-,:?'.,,,_’ 7"=?“"_" _9’_;,2?'”_.5-ff ‘

" 50=9 ¢, oi=9¢-,, ?—!:?n---y: Ya=¢ony Pn=%m-ty--c; |
(5) finally, the series which appear on the right sides of equations (13) must
be convergent and differentiable at least twice in S.

Therefore 1et us assume that |
© © ' !

L — zm J e’ (amcosma -+ by senm ») Jm (7 p) d 7 / , ‘
00 . . ) ; (16)

o= :;,,,J. ek -3) (q,, cosm w + by, sen M w) Tm (yp)dy . ) ' ‘

0 ) o ! j

in which a s bm, Em, bm are functions of y to be determined. From this we

consequently have |
\

oo N

$n == N ' ¢~ 12) (@, cos mi o - by sen m w) I (7 p) d 7,
P-n = Nm ' e 1enh 2) (a, cosm w + b,y sen " w) J,,l (ze)dy
' v - . (16")
g . B 0
¢n= }_:mJ e-1tnhth-2) (q, cosm w 4 by sen mw) Ju () d 7, |
. o |
¢-n=m ’-e wenh-h+2) (a,,. cos m w + bon sen m w) Jon'( (7p) d/
- . > i
. r A

With these values for ¢,an attempt must now be made to satisfy equation
(15), which may be written

10



. . : (15|)

4:;1. i (3'n
' 7+ 0? ' 9l oW
{' P ..l: 115.;3(?”_*_?”):32 1 +—-' ‘

The second term in this equation, since it is a harmonic and regular
function S, may in this region be represented by an expression of the form

o . . T o N A Sy
Emfe-‘” (a,,cos M w + 6, sen m w) J,, (yp)dy +
©e . U (17)
+ }}nfe*"("-’) (m COS M & + b,y sen mun)dm(yp)dy
‘ 0 _ . ' |
where a_, bm’ a_, b are functlons of y which are assumed to be known. Sub-~
stituting into expre351on (15') the values of ¢, ¢' and of — + ay + gW given

by expressions (16), (16'), and (17) and setting the coefficients of

e eosmwdulyp), evsenmmJ, (7p), € "5=2) cosm e J” & P)
* ’

e~7h-2) geyy me (e '
in the two terms equal, the follow1ng equatlons are obtalned

~ © B
P [ 1 - J

o0 o0
DL h.y! an E," n e'-”lh’/ —_— a”l }-‘" 7] c—(ln—_l)hl 9
A

N B ) .
_— . - - x
b :_—I‘A +3p 7 b,, (1 b Z"‘ e"""") _ bm 21 e-(mm-t)hy +

+ %'%- " 7, bm 24” n e~.nh/ - bm u i e—(!n ')hlw ’ v N
X . o (18)

- _A-I—Sl/[an l+2‘ e“’”"’)—~um ne(m l)hr1 + |

I = 4=

P ) 3 ol - . ;
+ ;_: ; Iy [am Nune it — a, Yume-tn ")"’] )
“p 1 1

.- 7. v
fy == [bm _I__ \ Ve mh/) _ bm 2‘“ e-(m- l)h/]

. - _ eo
+ ) —h 7! [bm A\J' ne mv—p, N ’l ne (- l)hl,]
. - y . 1 . ]

and 4=
AT (1 — e /) I — - (7L + 3 F‘) (e"f./ - ]) (am e _;m) +

-‘,eh/

‘ + 20+ p) by e (@ — a,, 17, -
4— ( F) ( K] ” .‘ (18')
g (1= ) = 0. ) (e — 1) ) (@ — o ) + |

11



+2(f+mh/e"'(ame"’-“m% o 5 (18")

A"m —[)+3y) 8”"—])—{-2(A hy]e"’am—{— ' { [
+[(/+3;1)(e"~—-1>+2(z+mh/e""]a |
Aa,,._-[(/+3u;(e"’"———l)+2(1—{-u)kye”"]a : )
: : +[V+3H)(8"’—1)+9()+u)’l/]c'am, ’
: Abm:[(}~+3f‘)(eh’*1)+2()+P)h7]e_hb + . ;
F [0+ 3 (e —1) 420+ p) hyeh] b, | (19)
Abp=[(A 48 —1) 420+ @ hye™ bp+ \
C T ABDET =D £ 26+ by e,
8= g [0 B e — 1Y 4Gy e grem). |

The values of ¢0, $' 0 and therefore also the other values of ¢ compiled 26

according to expressions (16) and (16') with those values of functions a s bm,
Em, b‘m are absolutely convergent and of equal degree in region 5 as a con-

sequence of the convergence of series (17), which is absolute and of equal
degree in the same region. The same properties are possessed also by the series
(=2

¢n, L¢-n, ... and the others which appear in the second term of expression
1 1

(13), as is easily verified. If, moreover, U, V, W are finite together with
the first and second derivatives also on o, the ¢ will also possess these
properties.

6. With this, the problem is solved. We should like now to add the
following developments which serve to complete the analytical representation
of the solution. Let us suppose that in §

© ) ) ‘ ‘

U= Emje-‘/-' (e cOS M @ + Emsenma)d, (yp)dy + |
] o '
+ Xom I e7h-2) (g, cosmw + B sen mw) Jm (7 ¢) d v, |
p _ o ‘ :
. @ ‘
V=3 l e (D cosma + SVsenma)d,(yprdy +

¢ 0 (20)
. ) o _ - : /
+ X¥m [e-‘/("—" (@l:cosm e -+ glsen mw) T (yp)d 7,

v

Zm ez (a"” cosmw + plsenmw)Ju(ye)dy + -

+ sze-/(”") (a"’ cosmw + B2 sen m w)Jm(zp)d7, j
. ‘ |

12 !



Then, assuming that x = p cos w, vy = p sin w:

- ‘ gi]-:__—;-cOSw[ye‘7:¢oJ|(7.“)d7'+ |
o‘- c.
+ J7 [(am+l —_ dm—a) cosma + (6””" Bin-y )sen " ';)] Jm (7 P) d; 4 —.‘
0
1 ' ' ’
—-—cost/c w2y g J, (/P)'Il ‘

)

iy de-/lZ k- z)[(ann—7m .)cosnzw%—(ﬁm“—ﬁm )senn o] J, (/P)‘]h

- 0V |
ay“*2‘5""“’70"“’.’J-(7P)d7-+

+5 ..l se r~[ (a, +a;p_,)sen mao (ﬁ;,‘,l,, + B2 yeosmn] Jon(yp)dy —

0
1. s-vu')m
g senm |y etk 3 g J-(‘/F)d7+
+ L h-z) 1) ’ : |
g | 7e M= @l L alh )sen m'1+(ﬁ...+.-wﬁ,‘,'.’. Yeosma] I (yp)dy (%),
o .
W 2 : '
= Em 7€ 7 (a2 cos m o —,— pf}f'cen me)d,(7)dy +
= 0
A PP LB ge '
1-_‘7. 7 (2 cow)zm - B2 senmm)J,,,(-/,c)d-/,

0

* 1t is sufficient therefore to note that
|

o . senw ge _ coSo
_35 = CO0S ® a——_—; antw —-f =——, 5 =
0z " 2y ’ ? oy 4

Jora=—htreh ‘—m-‘;”;(-—v—) = Ju-1 (08 -+ Im1 (7 ),

2 (18) = Jn—1{17) — Jm31 (v 7}

and that therefore P ? E )
axJo(:e) = —vhiraese, 2 hrd=—yhlrasenw !

3% [co:, o Jy (7 c;‘ =_ [co: (m—1) o Ty (I #) — cos (e -+ 1) o Ty (7 r)] ;
a—a— [cos o, (y g)] =— [sen {m - o Jy—1(y ¢} + sen (it Do J,,.+| (v ;)]

am [scn mo Jy (1 ;)] = -:’; I sen(in —1)wJ g —senfm 4+ 1) » J,,..H]

PE:
-aa—!/ [sen me I (Y C)] B :‘T[ cos(m — 1) e 'fi"-l 1 cos (m +1)e -’m-]-ll .
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in whose summations m always varies from zero to + ©. We assume however, that /28

the B's with zero subscript and the a's and B's with subscript -1 are zero.

We then find
) :é (e + B — 2,
W= (2 4 a4 60— 2
L —2a 28, |
o | |

(21)

-

X ' )
O — -2" (am-i-i - Op—1 + ﬁs,’.-)n T p‘l) 2 air:)))

m —_— (Bm-ﬂ ﬁm‘ “y.)q»x - ”'g)—l —2 ﬁ{uﬂ); ’

while a_\m and gm are given by the same formulas, provided that strokes are
added to all the a's and R's and the signs are changed on the last terms.

When U, V, W are given expanded into series in form (20) in S, and the
functions a s bm’ am, bIn are understood to be determined by means of the func-

tions o and B which enter into U, V, W by expressions (19) and (21), the solu-
tion of our problem may also be represented by the following formulas:

, ohehi(e~15— e13)J-2( zh’——l)(cl oh_‘,+e,__)‘ - |
H—=— -r 8_'1 l- he® (e f )(e,:,e_l)z l a.,cos«.:f‘]l (/P)'_‘_*‘. |

4+ N - AL a,,,“ @y .) cos M w + (bppar — b,,,-,‘) sen m o] J. (7 p) ; +

x ’ o _:'. J2h—z}\. _ ;l'_ : ‘-.': ) o S CoL ‘
p —{ E | eh/ dy 2h(et —ie’( h )%(e(:;wj)l(;ll 1)}(ct: -t e ){ — @, cos G’JA‘(?P) + (22)

..*_

)

z [(E,,,{. h— Em-l) CO8 M w + (_'.;m';'l, - Em-'l) Seﬂ. m w] 'Zm (7 P) z’ . l

eV 4 it %+ J)’d , 2710”'7(c—'/~'-—-c"-’)(-:;i/(.c_’—";)—;1)(c""""":& %) i —uaysen wd, (7 p) + |

o
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+ 24[ w1+ b»— )eosm w — (@, + @u-1) sen m ») J,, (7 p) z + |

.

8 [ g, P (et d ) |
+87=1*J iy —— T(ez;u-—l)c' — g ‘""se“"""(”)+

]

+. %; [(3:}.4*! + Zm—l) COS ") - (EI;HI JF‘ (;;”-1) sen n w] ‘Im (7 P) t ,

—

w—IV'—)+P'z5+ )+."h \vJ ch/(ch—c-/a) - b2y

E 1 (a,, cosmw +

+ Bnsenm o), (y P) dy

f— L w r (e,m--)_ ¢’)

g R (a,cosmw 4 o,senmaw)d,, (7p0dy +

.1 N eh/ e/> — e<7%) .
+ 7= Xn f'/ _(T, c )(a,,, oS M w J— b,,, sen m m) I (/p) d/,

in which formulas it must be assumed that b0 = bO = a_1 = a__l = b_1 = b—l = 0.

7. Case in which L, M, N are given on the two limiting planes. This new
problem could be easily solved directly by starting from expressions (8) (I)
and making use of the formulas which gives the function which is harmonic and
regular in S by means of the values which its normal derivative acquires on o,
which has been constructed for No. 3. It is perhaps more convenient to make
the problem depend on the preceding problem by observing that the indefinite
equations derived with respect to z give us

314 K-{—u. 2 90

dz p 0zdz ,0”' ] (23)

Writing the formulas similar to expression (13) for these equations and

noting that the functions which are harmonic and regular in S -- which on o
assume the values -g—g—, gZ’ g‘g for the surface conditions, i.e.,
v ' ‘
on gy : =~—2y(£r—;.:—m,)', ‘,:_2“(‘7;—{_5')"
: ~ | N=—35—2u3%, .
du (O v ow
and on 0,; -:25*(5—;;—09)* M=2yu ﬁ—;;’lrf-’.)’ .N—’9+2l‘ 27
are identical, respectively, to
e « W N 2
PR P T T
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where 9 Y m:

Mt indicate the functions which are harmonic and regular in S

which assume on Gl the values of L, M, N given on this plane with changed sign

and on cé the values of L, M, N given on ¢, with their own sign, we obtain

du
9z .

N

v
<

" @

1—{—'1 ofds -+ =
= . AT ¥
: + E axJ +/r (2nh+ )a J'ar7!u

¥ 06 ds
o —Sl_,l[(z"_l)hTz]a (az,-,.- |-
M el @ a)z, 5
_E—:I—ml+4:y._iz§—?; : +_‘n(21l’l+ a_J-_T:,_G

2
8 dhda i
0% 1 |

08 da

oL r

3 9 ae ls L@

__;,1(21111 z)a_[dw'a“.{h(h_z)a_z
. b e

+3n[(9"+1)h——z]-——'g;’d! —

- e,

(24)

—~— -~

I SN 3 20 as LLYENN
21,"(2_nh z)a J-a,,“ +(} z)bj 57T

g,

‘n“‘ 39 d' s
21,,[21;—}—1)11_-],\ f -

.__Q‘r y - ao—(—l_';—)
3 lzn l)h ]anaZ)‘z.z—lS’

dw N ; A+ 05, atp | ,
¢z 22 2u 24 P 4=y ‘l’az,‘ﬁ‘i ) +
. o
» 0 (98ds [ & ¢ (99 do
- n _,__L 3 — .}
r%ldz.az 11‘ 1132,'3:7'11-1! f

Calling wo, wb, v, 0, ll)'n, w'_n the expressions similar to ¢ of the

preceding problem when in the respective integrals, instead of 9, we set

36
3

. 32 25’.-—27.,1——*2” 5—2-+ “:’ ll“n az

The problem is reduced to determining the unknown functions ml, 2

, the formulas (24) may be written

ou ¢ % 4t ko

a_z .: 2_1;_ Ty ”}" _TL" ZN (2 n ’1 + h— 2) "

Ov 9)2> % . o

o0z 2u —o + -}'—?2},.[(27114 z)?} "+(2,,h+,l_2)84,.] \
oL

dw N 2 At
to 08 dtp

w, and

the values of Yy, so that the following holds identically
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et K PV T B P i A |
i‘l.’—;n(%—i—%)w%%—% B S
71.,(3,+a:§+*;g) i |

and so that the values of § satisfy the same condltlons 2, 3, 4, and 5 which
are satisfied by ¢ of the preceding problem.

0f equations (25), only the third is a condition for the values of .
When these functions are determined, the first two of equations (25) are de-
termined by quadratures; w, and w2 and u, v, w are also determined by expres-

sion (24) or (24') by means of quadratures.

Noting that

] 1 ¢ 9
a_‘_‘ 3 (S(’n_‘l‘n)' ‘ (26)

)|

we may write the last equation in expression (25) as

LG 2% (¢¢ , M |, ¢N (25")
‘,_::n (4’ n““r‘n) + 2k 2‘" ” 5Nt (4’" K " —m(('}_xﬁr 2—3/— i ;—;)
If we now set
=Y. l % (o COS 1w + B4 sEN M @) Ty (7 pdy7+
) E C R
+ M. ,e nh-2) (g, COS M w - ,6,,, sen m w).J,, (7 p) d '
('Y . . .
m = }_;,,, ’ e 15 (M cosm o ﬁ,‘,,” senmw)J, (yp)dy + |
o o . ' : : i (27)
I+ }_‘,,,,fe*""'—:’ (a9 cosm J,— EW sen m w) I (7 p.) dy, "
0 - ‘ . S
N =N [e-/* (a2 cos w1 w + ﬁ"’ senm w)J, (ye)dy —!—
+ z,,.J e~ 11 -2)) (2 cos m wf B2 sen i w) J,, (yg)dy,
it will be found that
a P 9: N
_} 7y ” P ‘,,,j *(am cos m & -} b, 8en M w) J,,, (/p)d/ + (28)
-+szﬁWﬂmmmmnm+b %nm@J’dey ' i
8- - ‘
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the functions as bm; am, Em of y being expressed by means of functions o and

B ‘from expression (21) If we oW hypothesize'

o == z,,,'J e-1° (a,,, cosmm + b, sen'm w) T (/p) d /, ) ' :
o , (29)
s ]

.4/»—_: ) ’e 7h—2) (g, cos m w Lb sen m n)J,,,(/p)dy('),
'y .

the other values of Y will be determined, like the corresponding values of
¢, by expression (16'). Then substituting expression (29) for 11)0, w'o in

expression (25'), similar expressions for the other values of y, and expression

(28) for 5 *_ dit gzl ‘ and setting equal the coefficients of

Cemrrcosmud,(7a), esenmod, (yp),
e - cosmad,(yp), e rh:)sen m o Ju (7 ¢h 1

we find the following equations:

2 I ) - 4 -
LT A = [ ‘-’; —enhy \, e—(!n |)h/] l .
)‘ I P’ 11" - / [am (1 ‘T‘ ) am l , ' -

JE——

o - & e - .
+2hy [a,,, Nonemht —q, Y. ne _')"/] s
- 1 1 :
9 = \., ‘. — @& o
T b = 7[6,,, (1 + N.e -""/) —b,, M et ""/] +
1 ; 1 1

- & —(tn~
+ 921 7 [bm 2“‘ ne-mhr bm -“. 92 e—(tn i)h/J
- 1 1

25 — - < -
i Gy =7 [ a,y (1 + :4" € ~71?ll) — Wy oy \ a € (en l)hl] _L
h S i l

P N o (ne Oy
-+ 21 ./! [“m "\Jn n e mkr a, ‘\"-l ne ('n i)hl] ’
. | . 1 ) X .

il 30)

- 2 - _ N . - B _ _ . : i
‘ ~‘ b, = 7[1'"‘(1. 4 :;‘; ‘ :nhl)__ bm -‘,, e—{m !)lnl] + . ;
, R i JEs B
+ 21 7’ [bm )r.a ne hy _bm ‘:“u " e=tn" 1) ll] . \

from which we have

* We have indicated the indeterminate functions of y which enter into {, 2%, 9,
and into l,bo, w'o, with the same name which we called the similar functions

which enter into U, V. W and into ¢O’ q>'0 in the preceding problem, both for

the sake of simplicity and because there is no room for any misunderstanding.
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|
A(T,,,——igh/—*—2]5/_1)8’17‘]'"_*_[e“h/(‘)h +]) l]ﬂm} \

Aa,,,_[e”'1(2 ]l 7 —*— )— 1] d,,, + (e.hl —I—- 2 ,l 7 l)e”n

- AL, == (e 2Ny — 1) M p,, L [ehr (2h, +'1)—1]b
Ab

"y {

(30")

ny $
" [e’h7 2 ]l ]) = 1] [‘m + (e.hl 9 ’l 7 Hl) e o b,,, ’ V \ ‘

( 7
R e R V)

The problem is solved, except for performing the quadratures, and verifi- /34
cation of the solution may be readily provided by bearing in mind what has been
said for the preceding problem.

8. To complete the analytical description of the solution, let us set

«
= }..mJ ” (omcosm o + B sen i w) J,, (’ P Ay +

e-/(’l—. —_

(cz,,, €OoS M2 w + B,, sen 1 ») J,,, (79 d 7

+ _},f

W= — ‘ (a“’ cosmw 4 flsenmuw)J, (ye)dy +
. o :

(31)

—

e—/(h—:l — ' |
(@ eosmw L 0 sen mw) J, (7 p) d 7, [

+“[

6— ) '

*vz = — ¥, f—-—— («® cos m w —} B{,}’ senmw)J, (yp)dy 4+

—¢{th—z . i
+ ¥ f ¢ (am cos m » -+ B2 sen m ») Ju(7p)d 7,

0

in which formulas it is understood that the term corresponding tom = 0 is
suitably modified so that the integral will be finite.*

* To construct the expression, for example, for ¢, without misunderstanding, it
may be remarked that y represents the harmonic function in § whose normal der-
ivative assumes on o the values L, and therefore use may be made of formula
(10) in which the condition is made that

d l ;Q .
J‘L(;;;—-Aﬁuh (lcsz(;T"'-' e-znde‘{)dG...
G

It then suffices to develop _l_ in Bessel functions, as was done by Heine
T2n
(loc. cit.) and to sum with respect to 7.
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Similarly, let us indicate by a letter or a stroke, or with two strokes on top,
every function which is harmonic and regular in S whose derivative with respect
to 2, or whose second derivative with respect to 2z, is the function which is

harmonic and regular in S represented bh the same letter without strokes. We
will thus have
e A4t a7 i
_—— —— \\ ¢ 7n H
R ) [unh+ 0%y ]
. +(27llzTh—z) 5a '9;(4"‘__4"")]’
Mo Aty 29, - 24" 'Y
0—2‘;——131—}- 2= _‘11[(211’1,—-*—2) yl / (
t@nh b2 o 5]
(@nh —Z)-—yw-ywn—sbn),
. 9_2 1 - /+J.’ A4 ’
10__2—:L+—2—6— 5+ 4-'1- hS"‘Pn,(' }
,,.,_L(H‘r_.@ _ 2 28 |
‘Tep\dy D 2.4.773—'
A dpie
"—4:‘5‘;{ (271’2 'n+44n)+ (2",{8&,.——('/”)]
—_ _— — 1]
et (BT 27 2 29 250
‘.’—‘2;4 9z Cz 2_‘u 5z T ‘
Adu {
+4T'X’--‘” a ()1lhyn+4m)+ (211’[51,.-——9")] |
1 N |
=
1+J(3.v+ ¥ +3z)
Btz 5 1 i,
—j_jl'r"g—(sfrc 1-Vn)='2—_:.‘..u ($'n—¢n). 2 '
= =4 i
These formulas, finally -- by substituting expressions (29) and similar
ones for values of y and performing the summation with respect to » —-- may be
formulated as follows
.3 (25"
?‘_2:‘%?’_
* TIf the wn’ w'n are represented by integrals extended over Ol or 02, it

must be understood that in these formulas

20

= Jolm

2n h

‘:J-ﬂ= o( ’

oy

1

ra2n—1

1

20k
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-+

. %4 rd7 ?h“.’e”"/(c'”-l—e—'/::)v—}—(c°"/—1)re/ 27:—~;+61-..}_z- (c"""-~)—c/ )]
8=, :

) e"/d D (evs L et h-2) f (21— 1) [c/ +-e-r +(k—z) (er:— e~73)| ¢ _

- A ) 2hye? h/(cl J-e-7: ) {_(c"h/__l)[c/\"h—.. —!—e’*+z((c/ Bhez'_gvs
brr d/ y(eshr —1)2 )13 awcosnd, (7”4

—L E ut [(am+l—am—- )COQ e + ( (772 o R m |) Sen m "’] ‘Im (/ 5) s +

27» 2hy(c* F-et1?h—21 - (c“"/—-l [c/~+c-/»+(h—~) (c1:—e—73)]

‘ hld | | (c”'/—-l)’ - o 5 g €05 0 J, (/p) +

+ X[ (g s — Qs Y eosm o 4 (B —b,) senm ), (7P)s .

5]

v= — 0

(-]

|3
D

v(ehr—1)2 (‘_ a,8en o Jily0) +

+ X [Burs + b,y cOSMEO— (s d,,,_ )senmw] J,, (7p) 3 _

i »-—a,,se-nmJ.(y,_a) +

e g
3 ',” . | | (eu/ ])2
+ Em [(ibm-ﬂ —%-Z,,,-.)cos_m.m—(a,,,+. + ‘Zn—-)sen m "’]J;n (7 l&) t ? : a
%W, 1- At
W == = +‘-—0 z5 o
' B 2p +- ST
N RN der
=+ = Il _‘_,,,, ‘-e’”?(a,,, cos mw + b, sen m m) J,,, (yp)dy.
0 , , :
12w oW\ » a9 :
Uj n T T 5
2u\0dy 0z 2v.0

72+ ou fd , 2k -- ethy (e—/- — e/~) + (e"’" 1) (évz — efith-s3}) I
. —Q

8=y ; ‘((e"'/—l)’ sean. (7e) + ‘ :
[‘bm‘H + bm l) coOsSm w-— ( it + a,,, .) sen m w] 'Im (7 P) ) Ii :

~

-‘ v f ch7 d 2 h c’l/ (e—l(h__,‘. . c,'h.— )) + (g"’ll — l) (C°/v — ¢i:

~ 8= ) J {(erlu/:i)z ‘——*—“)2 _-a,,scnuJ ‘/P)

[(b""“ -* b‘”-') Cosma — ( m ¥ + am l) sen ‘)] ']m (7 ) ‘ ]

' ¢ amy, 2 9,
= 2'l(az 85)+§TA~;:T

, . :
M [ d} 2hy ethi (c-v: — €) + (et — 1) (ev: — ertrh—s3) ' .
-{ (e’h'/ — 1)2 — Uy COS ) r]] (7 P’ +

(25")

(25")

131
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-+ E [(dm*l*l-— a,,,_,) CoS . m -} (bmH — bm__.) sen m (,,] J,, (7P) l +

| |
) + i 2 /ch/(e —y ks __e,(,l_‘) (et — 1) (et — g
leh,d ¥ (ethr = 1) ) : ){——(aosenmJ(,d)_}_ ‘

T+ X [((7,,“1 — Em-.) Cos 7 » -+ (5:,,;, —b,. ysenmw] J, (75) } N 25"
: 1 /\2h'-) 13
Y= 5% E».J f——h,——*_—f— (@, cos m w + b, sen m ) Jo (zp)dy +
0 .
|
1 ¢h/ el + ¢71%) . ‘
?‘Lmr ;“Jl——{mﬂmmnm+bmwwmeLA/ﬁd/(ﬂ, !
. , - |
in which formulas it must still be assumed that b0 = EO =a = 5_1 = b_l =
= b_1 = 0.

8. Cases in which other conditions are given on the two limiting planes.
By the use of methods similar to the preceding ones, all the other problems in
which some of the displacements and some of the stresses on o are given may be

easily solved. These problems also include the four in which both on 9 and on

o, 1) u, v, N; @)L, v, woru, M, w; (3) u, M, Nor L, v, N; (4) L, M, w

are given. To obtain the solution of these problems, it is sufficient to
combine in proper fashion expressions (13) or (13') derived with respect to 2,
and expressions (24) or (24'), and to bear in mind that, given ¢0 and ¢'0 ex-

panded into series, as by expression (16), the expansions into similar series
of wo and w'o are

b |
$o = X f Py — [— (c"" + Dya, + 2¢ a,,,] cos m » + \x

il
v
_(e’7l7 1)b,, 4 2c""lT,,,-sen 2 Julype)dy

e _

’ ~ e—/th-~ .
¢o=2Y. ‘ pryvp— ([-—- era, + (eth 4- 1 ,,,] cps me -+ i
’ 0

+ [—2emb, + (e”"’ + 1)5,.,) sen m w}Jm (7a)dy ||
These values of wo and w'o are easily expressed by a series of derivatives
of ¢, with respect to z, and may be obtained by setting equal the coefficients
0 % y

of the two sides of the equation

4+ S

ar ., 2 ,,.
‘ ‘:"132 (¢ n“?n)—z a_('."n""‘f’n)-

(*) In this formula, we must note that ap, bms o b have a factor Y.
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In addition to the four preceding problems, twenty other problems may be
solved with equal ease, i.e., those in which on one of the planes, for example,
u, v, w or L, M, N are given on G,s or ome of the other six combinations en-

umerated above, while on o, other conditions are given, always taken from these

2

combinations, but not identical to those given on o To solve these other

1°
problems, the formula must also be used which gives the function, harmonic in
S, in terms of the values which this function assumes on one of the planes and
by means of the values which its normal derivative assumes on the other plane,

and of the corresponding Green function of which we spoke in No. 2.

Among all of these problems, special mention should be made of the three
in which the normal component of the stress and the tangential components of
the displacements on any one of the planes is given, or vice versa, because to
solve them it is not necessary to have recourse to expansions of special func-
tions into series. Availing ourselves, in fact, of one property of the elasti-
city equations taken from Professor Somigliana* we may -- by starting with the
solutions of similar problems given on page 13 of Note I and relative to the
case in which the elastic body is limited by a single plane -- formulate in-
finite solutions of the elasticity problem with successive reflections, in

Professor Somigliana's sense, with respect to planes 9 and Oy With these

infinite solutions, the solutions of our problems may be formulated by an al-
ternate method.

IT. Problems in Which the Elastic Body is Limited by
Two Concentric Spheres

1. Green's Function and Harmonic Function. About this very well-known
topic we will say as much as is necessary in order to proceed safely in our
computations. Let us assume that the two spheres limiting the elastic body
have as their common center the coordinate origin, and let us indicate their

surfaces by 9 and 05 and their radii by Rl’ R2, respectively, and let R1 <

< Rz. Meantime, we shall continue to indicate by o the combination of 91 and

Oos and by S the poriton of space limited by them.

If A= (x, y, z) is a point inside S and (£, n, ) any other point of S,
let us set

N=\FTFTE p={FET TS

'lpcos m‘:?:;” -+ y;,—}—z{, .r=\/l'+p’——2l'p.‘cosw

which is the notation already adopted. Together with point A, let us consider

the infinite series of points Al’ AZ’ ceey An’ ... which are obtained by taking

in succession the reciprocals of A first with respect to oy and then with

* "On the Principle of the Images of Lord Kelvin and the Elasticity Equations'",
Rediconti dell'Accademia dei Lincei, Vol. 11, 1St half~year, signature 5,
fascicle 4.
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respect to Tys which will alternately fall on the outside of Oy and on the in-

side of oy Let us consider the infinite series of points Al, Aé, “ee A&, cens

which are obtained by taking in succession the reciprocals of A first with
respect to 91 and then with respect to Oys which will alternately fall on the
outside of 9y and on the inside of 0ye All these points, as is known, are
located on the radius vector which goes to point A. Let us then designate Zi

and r, the distances from the origin and from point (£, n, ) to Ai’ and by Z'i,

r'i the distance of these same two points from A'i. We will clearly have /40
: !'n R !n]]!
L= 12‘(&) froees fo :(F) b o ”‘(R:) T
R , R\, . R: n R} 33
=5, ’:(‘1:7) 2 12(17) b Fe= (g [T 5 (] (33)
1',-:\/P’ + —2lLgcosw, ri=\l}+4 g —2 I',-p_cos o, J /
By known properties of the inversion, when point (£, n, ¢) is on 01, We
have 1_R1 1 _R 1 .
r I'n -’ "fs:;-_—_l:)z_ Yo+t ? “Z‘
'_1_"_111 U S SNF SR
T o

while if point (£, n , ¢) is located on o, we have

1_ k2 01 R 1
r — ) 1"1 ? ’ 1"2‘; l:n Y eandt ’
1_R1 1 Bl
7 o L 1 ’ - Yot _l‘.'n-l [T )
If -- when point (£, n, z) is chosen in any way -- it is A which falls on oy

and hence 1 = Ri’ we have |
=1, L=1,..., L=1Uli,..

re=1r,, r,::r};...; r;;:r}-,,,.., 
If A falls on 09 and hence 1 = Ry, we have
l::l',', l',:l;,..., l',‘-——‘.lz._'“....;b '

7':)"., 1',2-:"14’---' 1‘1—"——"‘".'-.',...', )

Series
_R1 Re '__R‘ 1) (Iz.\s(__-& l)__...__ﬂ
' - Pt e ory) Ii’l) [4'15 ' —— 1 (34)
_R1 g (“"(L_& L) |
B L r [u) Yea hn Y _. .
__ ks Ii’sl Bl Ry, Y
_mpomrpnponny, g
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R & (]l’l n-tf ] I: 1 ) L
= \ 3 ' —_—y - &
Ty \Rf ) A\t lan. 1 an l

E

(34)

is such that its terms, considered in S as functions of &, n, £, are all of
the same sign and are harmonic and regular functions. Based on what has been

noted, it reduces to 1 on Oq1s while on 0y

it becomes identically zero.

The

r
same series therefore represents a function which is harmonic and regular in

S and differentiable term by term any number of times. Series

,_ R 1 Ii’.(l R: 1)' (R.\'(. 1:;1) Y

Trh R T ) \®)

13 (!l (L _R 1 ):
- ) 1"1 -‘“ R: l"2n> Usa ¥ 20w

. R.¢ Rgn—(l_Ra_l_j.
7 ——_ T (Pl 1"!;1_( llz;z‘.| 1"!)1 l

, while on o, it

possesses similar properties;g' becomes identically zero on o
1

1

2

becomes equal to = . Thus Green's function relative to point A and to space

T
S is as follows in the most suitable fo;m for our calculations
1 . )
G=y—9—9"

The normal derivative of G on o, is:

1
PG\ - ( ) P,—z.,, . ‘_!
T le—m R: 1“ 2 '
o .__ Ry {’” (Pl )"" 11.3 —_ 131._1
-l T\R 11 o=R, s

and on 02:

G\ Bi—1r )
(35)_5’1_—](1 [ + .‘"(l, ) ’.n

b
[
_ I (R~ )" 'Ri—lm_] : Vo
Y ] ”‘n R P N =P /

(36)

(37)

(37")

Function ¢ which is harmonic and regular in S, which assumes the values given

on 0, will therefore be represented by formula

450 ==— [(R——I)ftb-— + 3 ‘1,’)(1?—_1*,.)[1»1’-'--
g (b w-ﬂl el U
i [«R'—”)f o (R')”*—’""J"f s

o ‘ . H

(38)

/41
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2%
L kA

2. Noting that, if ¢ is a harmonic function such as

, it immediately

results that in order to formulate the function which is harmonic and regular
in S whose normal derivative assumes assigned values on o, it is sufficient to

formulate the function which is harmonic and regular in S which assumes on o

the values given for the normal derivative on this surface multiplied by R

1
1’

and on 9, the values given on Sy for the normal derivative, these values being

similarly multiplied by R2. From the function thus formulated,

function will be derived by quadrature. So we have

the desired

° —ad) N fdd do 2 de ds
4Tl-d—l=_“(Rx_l2) c—l—n F -IJ"( ) (R —lin) [dﬂ 1")1 +
R» Ro\n-1 ., dﬂ’ _d_o'____
o 7%"(‘37) @ for 4T
.! . dq.d: 3 ( 1\ 2 4 (lt[’dG |
—(R’—.—_I)J dn r3_>'1‘"(3—2) (‘Rz—l:") dn r§,,+
Rl g Rl ’ d¢ do‘
+ ,‘Ln(RJ (R} — lh’d dn fm—l Y
and thus ) 143
1
dl dev ds | ’
40— C()St ——I [(Rn - l’) du ,! kR | ‘
de dr ' ' 1
+ -l"(]{ ) (R d” 1',11 : f
: \
Rz (R, . dd' _ |
n ) -—I e
[ 4 ' .
ALl e (deds : d¢ ds
—J‘TI(RZ—I)J‘CZ" 3 (—_) (R ) du f,n
h .

R; > -t dq’ dc
l L“ (R( ) (R:- m-l)fdn r ;tl_l]

The first of the integrals which appear in this formula is certainly

finite.
us note that
db de

du 1
I

lim [(R* — l*)

=0

-,'“(m) (B — L

IS
] 0

dl' dc
dil ry:

L $
=z {1 ‘+ o
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In order to demonstrate the fact that the second is also finite, let




. Re & (R: \n-t 2 . . do dG _
m NV 2 R: 3 ——
- 1’1:0 l ‘;-‘” }g‘) ( ! -l"‘ 'J dn r3a_.

1[§, (R )"‘] d*"ds_—_» [1+ ( )] d?c

T RIE\R dn

\

5

. |

and that for the existence of the desired function it must be assumed that
do "d e |

d” dG+J_dc:0.

3.

observations.

Meanwhile d
R G
(Bi—t) 058 =

(=] e

R, . ra ds
T(R‘_l’"’f)f¢'TH:

1:’ (R f \/ (R,. )M Rap_o9 (%‘;’,)MR, I cos m-’- ‘

[ (P")‘” ] J r;.i: ’
7 [(”’)"‘R—l’]f

(R—ln,,J(p (

For greater clarity in future computations, let us add the following

o R ds
‘n_l)fq roll-l

7 [P ()] o,

Oy

where we have set

f =1/ (%)me tr_2 (%)MR. 1 cos o,

K = \/ (g—f)‘"}if fr—2 (%-)"R Leos o,
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V(f—f;)‘nR + I —2 (g—:)mR, 1 cos w,

Fin—t == \/(—_) R +&— 2 (%)mR, leosw,

With these positions, expression (38) may be written

'D:;—'::I—I.{l—j(l, I)J.(p - ‘*‘-—4" 112) [l’ U:‘) RJ“D;IZ:I—— ‘Jr
| ot |
L Kt T T

+ ﬁﬂf“ﬁ—”’f 2 S (BT (e —’z]f ® g —

— 5@l —(E) "R foa=] o

Oy

Secondly, let us remember that every function which is harmoinc and
regular inside a sphere having its center at the origin may be represented by
a series which is absolutley convergent and, of equal degree inside the sphere.
This series has the form

;”l X”‘ (x, y’ z) l

where Xm(x, y, z) is a harmonic function homogeneous in x, y, z of whole and

positive degree m. Similarly, every function which is harmonic and regular
outside a sphere having its center in the origin may be represented by a series
of form

« .
». ]
-;)‘m X—(m+') (1.7 y’ Z)

where X—(m+1)(x’ ¥y, z) is a function harmonic, homogeneous in x, y, z of the

whole negative -(m + 1) degree. Finally, every function harmonic and regular
in the space between two concentric spheres having their common center in the
coordinate origin may be represented by the sum of the two series

‘i':m Xm (3., J, Z) + H‘” A (m+l) (x) J, Z)— _‘m Ym (xj J’ z)

where Xm and X_m retain their former meaning. 1If, on the contrary, we set

- K @,
rey N 13 %‘"‘ X"("‘"')(xr Y, 2\7
o . . ' i (40)
R—1 de _ g l
4" R. f¢ ] %‘ \’”‘Iv ./1 -)) -
- o .
function ¢ given by expression (38') will also be represented by formula
L a‘, VI FCLE R LRI . @‘ ]' a1 Pmyy ] ‘myt .
‘I) ...4 4 1‘-'11111 — ], 2,541 A—(mH) "'] ..Jm i ]] 24t {;,,H_‘ Am‘- (38 1 |)
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Let us note, finally, that function 1 %9. may be constructed directly by

means of the values which this function assumes on o, or it may be derived by
performing operation 7 _29_ on expressions (38') or (38''). Comparing the series

expansions of 7 %% which are thus obtained, it is immediately found that
r— R] 34' de i
‘ 4= ) ag 1’—— ' ' /
e (2m+ 1) (RyReppmssl= 20 0 X (1) REn+ - m B ”'*‘J\— : |
| ‘5‘"’ B _P;m-H R‘m.ﬂ ? : (41)
| | R—r(oe do__ !
4% 9y "\ |
Gy . . '
— % [(n- {-I)R"”* ‘+m.])_’i"'“]X,,,——(?m—}-l)l*'"+‘ X iw+n X
A(',J’" R‘E’mq_!__ lﬁm-a»l ) “' |

the values of X entering into this formula always being those which appear in
expression (40). With the aid of expressions (40) and (41), it is easy to
find analytical expressions for the function, harmonic in S, which assumes

given values on one of the spherical surfaces, while on the other the normal
derivative assumes given values.

4. Case in Which u, v, w, are Given on the Two Limiting Spheres. Let us
call U, V, W the functions harmonic and regular in S which on o acquire the
respective values u, v, w, and let us note that

——R)Jr —r(l*—R,)fe—-L(l* R: ,’o \
L e
+[” (=) ]axf”r,.,'

(B L)oo =) ]f s

A

A4 - - » [ - - . » i - . . L] - . . . - - . -

(42)

~-

where the unwritten formulas relate to the similar integrals extended over O /47

and to those in which £ changes successively into n and ¢. 1If, for purposes
of brevity, we then set

i R 6, — l _ —,, , R,)ln , ,(lc .
( R,)Ja t= R 9"—[1 (1f~ R J"rzu' ‘ (43)

‘ I
I m_ de ) ‘
L

7
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Gy

45 R.6 = (R —F) f ZETRNES W [(_)‘Iz -~ z=] 4,
4 Ra-,_[z ~(By R:]fa e |
rg)l..l 1
i
i

(43)

' I deo :
4‘11'1?‘ = 5/ =, _ _ ds
1o r 4”R‘ ¥n _fg Ton 4= Rig-n —_(6 e o

'y ‘ ] - |
. N 1

-‘ 4:]?..,?'0 :J.ﬁ'ir-—c, 4‘_R"?'n:‘ 9—(11., 4:]{.'?'_”': p de I”

r . Y2t

. o A
the usual formulas (5) and similar ones in report I will in the present case

give us : ;
“::U_l;—u a+7«+u1( 5—{-(1’ Rl)a':z,, o “1
v _ o o
S R N t n 013 it A
, +%H(E) [x& +[l (;) leao] f
J R * 2 n 2 a ] -
_%*'(ﬁ:f)[ oot () 1952+ >
a'bo R 2o
R R._ - ro t 10 9 n 44
v g e @) ||
& (R v fid) 34
N 2 2 Y N
f'(R.J[ On+ 0 —(7)” R =]} |
The other two unwritten formulas are derived from the written one by exchang- 148

ing u, U, x with v, V, y and with w, W, z.

The attempt must now be made to determine the unknown functions 6 Gn,

0’
G_n; 6'0, e'n, e'_n; ¢0, ««., 80 that: (1) the series which appear on the right

sides of expressions (44) will be convergent in S and will tend on ¢ toward
finite values; (2) each of these series will be harmonic and regular in S; (3)
between 8 with the different subscripts and the corresponding values of ¢ the
following relationships hold true; (4) the ¢ and ¢' with subscripts different
from zero will be linked with ¢0(x, y, z) and ¢'O(x, vy, z) by the following

relationships:
390 . . a?n ’ ) . ~3‘ T I ‘i
— 8, =21 +.'o: 'f“cfg'—2lal + 9n, 6a=21 2¢ "¢ m ‘(45')
v’ '-lr’ ’ L a?‘“ s 4 S ':"_7)' ’
6,:2l"a—i‘!+?o, 6”—21-—“ +?n, —-_9-”_21—_5—2—.—*—?_",'/

* It is useful for the following discussion to bear in mind the fact that the
quantity in brackets f is an expression of the function which is harmonic
and regular in S which assumes values x6 on o.
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e (7, y, 7)== 2 [']I; T, ;:‘ (%)2], \‘}
RN Ly ” Iie, (o Ry (R I |
#x (7, Z)ZG?—)?[(P-)r G{), (%H ‘ 45"

:"—n — RS [(]) )°11 Bg—z (]l)l n R- R' ™m lz. ‘- ‘\
b 12 L2 ]{n) 12 (Re) ‘F‘] ’ j ;

(5) finally, the following equation will be identically satisfied:
oV , 0W- 3%+5u tuw,00

2x+ y s T e Tt tar—
. ise.+za'°+2z"°°+_,u(ﬁ°) (3en+l”"+2la°‘)— |
e
+3:9H laa)zo ‘) (35 +la —.—213-;’—;1‘)— |
BT 8 i)

o
It is easily verified that under these conditions expressions (44) re-
present the solution of our problem.

To achieve our purpose, let us observe that,since ¢y must be a function /49
which is harmonic and regular outside the sphere of radius R, it may always
be represented with a series of form

Fo — %;m X—(m-H) r (47)

Since ¢'0 must be harmonic and regular inside the sphere of radius Ry, it may

be represented by a series of form ‘
?":%‘"’Xm, 47")

where X—(m+l) and Xm are solid spherical harmonic functions, the first of neg-

ative order -(m + 1) and the second of positive order m to be determined in
such a way that the preceding conditions are satisfied. We will then have

& (R X ¥ T \enimsn) £ ] "eng . _
?n - 1].‘"1 ], —-(mH)vj ?-n. ‘_,m 1{ ’Tl <X __(mt+1)9
R (R"’zn(rn“) . ' ' : . (Rt)’"m (.]_gf):mu .. |
?‘ n— '(.)‘, T my §fen=—7 _‘m 7 7 - m) ‘ 47"

\enm --r |

& , - ‘& R
b, =N (2 + 1 X (19, bn :"\6"“ (2m+ ])(73’:) —(n+1) )y
- 0 - . " i

o Rl !n(mH)(l M4t '. o i
7w |

on= SO+ 1)( n ~wn3

31




my

, . x o .,"( v1)
.60:%»)1(21)2+1)X,,,, 5’,,:}_;»;(21)1-{—])(%1""’” ’A J
. 0 2

) o - nm"’ L \tme - .
6.'_,,: %_:,,. (2m + l)(g—:)’ (E), "Ny ‘

l 47"
Noting that 5 o
: . _ -0 X . &
gaXD=0 or TFE=—gF X,
for which the terms which contain X 1 in xe + 12 9¢n and g¢"n are zero, we
- 3 x
have + + }; :
A v A v ( (1} y
u=U-2"F 5e 6+ 75 .rm ],, )X -l
Rim=e -t
m (2 m 1) ;,,-__——J}T, X—(m ) +
m ]?Em-! — Qi s Vs _m+8 — 43 1o X_ RPN ’
+ 2“ n [l’ Iﬁm—l —_— ]lﬁm—l - R’ 1‘)§m+a —_— ]‘)"-'qu] a @ +
- m43 [>°m+s R 2mas
+x:‘m(91ll+ l)m—]{—'_m-:s(_ Am+ ) ,
+' ‘-,‘.m .[* Pm—y ]g‘;m- o Pmes leqa ( ,)zm+i a Am (48)
' ‘l.l A 1‘:;;;1-1 —_ Rim-g . 2 R;m+3 m-n l oz ?
o Rt . et ) .
W 2
‘o‘m (2.”2 + ]) m X—(:)|+l) +

+ 2 gm (2m + 1)11;”’;‘_1&,(&)5»1“

Mt e Jimgt my ) i

in which again the two formulas relative to v and w, which are not written, are

deduced from the formula for u by interchanging u, U, x and v, V vy, and u, U
x and w, W, z.

We now assume

U :;’" U + a-l'" U—(m+|), co }
V p=—] %'m I’m + ‘6‘»' V;-(m_'H“ ) | (49)
W=5.W,+ 5.7 ey |

where U s U —(m+l)? may be assumed to be known. Let us substitute into

expression (46) the preceding values of U, V, W and the values of 6 and ¢

given by expressions (47), (47'), and (47") and let us in expression (46) set
the terms of degree m equal to those of degree -(m + 1).
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Assuming also

9 Uy "t Wt ' a U, oW
etn -— + ___m_‘_ ’ 9_ " = —m — a IV'.’“ |
=9z 7 + 9z ) = oy ez |
we will have the equations ’ /51
eDZXO) X_l == li'_ Xo, - 1 .
2u8, =
—pmX g(m }—.1)(7;:1—1 .5)1:,(/;—1{_) (2m 4- l)l(m +3)n - (m- -}+5) ];
- {m )( 1{ m-; 3_]{":)1-,3 1{':1:-4 l__]{;:_u:ih ’_
 Dmn v (m—{«])("m%—‘i)] :(tp) (’m+])[(m+3)lt+(m +5)u ,
R, J‘\y R m+3—]{“’m+3 B ]{-m+¢___1{‘m+l ] , (50)

- 3 ’ : l M4
. 2‘“ (T{;) e'(»r‘-l)z

:{!m;ix('u;’)g 1’"@»1-—-1)0. +:2) __(2m - 1)[(m— 2)A+(:)z;4)-L]g

» {9(1)3:11-1 _])3»"—1 ) R“"H 1 JPinst
Y 2 m(?m—-l) () (2m +D)[(m—2)+ (m—4)p]) '
) " m H ( RJn i -m 1) : R%ng._]{"m-, 1 s A '

in which subscript m ranges from 1 to ~. Solving the preceding equations for

X_ (m+1) and Xm , we find
A X-—(m-“): N . | ;

—9 m(?m—l) (h42) v(?m-—f—l)[(m—-?)) +(m—4

% : %+ (m—4). ] R "‘+’

]{I(H m— l_l{':n l) Rgm-u _]{'im-fl {t
9, I((m + l)_{)2»_;i§))£il—[w) (2m +1)[(m 4 3)2.4 (m+5) u”
]{ 14 _b-m.}s R‘_;’mq,a_]ﬁm.,.‘ , —(“‘f'h (51)
A X, =2 ( n‘z(‘)m -_1)(; +u) (27»—{—1)[(»1—")7 -}-(m—4j ]
( h(])- " _f.tz,n 1) R-m+l_H-1n+l ) 9,“——
2 ;(m +11{)S?-:):+3);I{,(A+ 1) _@mED[(n 439 (i -5 5)1])( LTS
. 2 .__]{ nm43 R‘-’)”-[»I_R'nl-}-l ) 1{,’ ~(m+1)y

=(Rim+ |__R9m+ 1)5 . "’(’:“*‘1)(9”‘—1) (2"’+3) (O-+u)e
) (H s Y -m+))(])"m—l_b’!m 1) .

+ ("m-i-l) (2m+1)[m(m4-1)(A 1) +4p(3-}-2u)) T i

» (R!m+ l._R-m+ 1) : l . oo }

Since u (A + 2u) > 0, A never becomes zero for any whole and positive

value of m or for any value of Rl such that 0 < Rl < R2.* This shows that the /52

% Tt is somewhat difficult to prove this assertion. The goal may be reached
by the following line of reasoning. (Continued on following page).
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problem always has ome solution and one only. To convince ourselves of the
convergence of the series which appear in our formulas in region S, it is
sufficient to compare them to the series

Hl tm 1 V = _
E",( I} ) 9,"’ %‘m e—(m+l) “
: 1
which under the assumptions converge in absolute and uniform fashion between
l ¥ BRy,or to the series
2, l (m+t .
‘6‘”‘ em, ."3‘»1 {'j{: em(,,-l-l)

which converge absolutely and uniformly for 7 < R,.

This comparison may be made without difficulty. Finally, the various

* (Continued)
To show that A never becomes zero under the conditions indicated, it is

sufficient to demonstrate the fact that this property is possessed by the ex-

pression

— (Rgmt1 — RN i (- 1) (2m — 1) (2m + 3) (l + u)’ ) ~
AR 1P [min+1) A 4 w)2 4+ 1u 4 24)] (Rgm+3 — feznts) (Rm—1 — pzm—l) ) | (a)
Expression (a) for Rl = R2 becomes zero, while for Rl = 0 it is greater than

zero. It is therefore sufficient to show that expression (a) decreases con-
tinuously as Rl increases from zero to Rz, or that the derivative with respect

to Rl is always negative, whatever m may be, and for 0 < R1 < R2. This deriva-

tive is given by

2 + 1) RI—22 1%} (B3t — R";""H)‘m (i +1DRn— 1) @43+ p)E—

. —@Qa+Lmm+ ) Fe)+ ' R
4w (o 2] [(200 -+ 3) RE(EEH=1 — Rem=t) -+ (2 — 1) (43 — Rom )}, )
The quantity in brackets { }, when we set R, = Rle&’ except for Rim+3, may be

written _ .
2 (215 = 1Y in(m + )R —1) 2 m43) 0+ w)2 = m4- 1) [m (1) ¢+ )2+ |
+ 42+ 2)][2m + 3) (eBr-112—1) 4 (2m — 1) (cB=+3)2 —1)] \

and expanding the exponentials in series, except for factor (2m - 1) (2m + 1)
(2m + 3), we may also write

_§€L1mUhFUO+ﬂ[Lm+%’1+Pm—1V4”°@m+nhq+]
stV

+ 40429 [@m+ 3y £ @m—1p
Since

2in 4 3p-1 + 2m— l)"—l —2Rm+1)-1. 1) (2 m)i [‘%V—l-"—{— ‘
| : ‘+(—1)'.""'—>2]>0

this formula completely proves our assertion.
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terms on the right sides of expressions (44) and (48) will converge on o to
finite limits if the second derivatives of series (49) possess this property,
which may certainly be brought about by assuming that the values of u, v, w
given on ¢ admit derivatives, of the first order at least, with respect to the
two parameters which specify the points in o.

5. Case in Which L, M, N are Given on the Two Limiting Spheres. Let us
start from the equations

A? (zg;f) +'7‘+ aaa,( + a)_o,...

: I
B ARl )

and write the usual basic formulas for these equations, still retaining for a
moment Green's function G

0u __dh (GudC uJ?udG IR (ao+5) ;

TR TN PR TRV EY I P P PR

+)84__*"J(s?—3+5)g§dc, ‘ (53)

i T |

(52)

We should remember that the surface conditions are now

. x by a“ y_—- i - ‘
T “L"""QP*+2 (ez+""7u".-' “"lu'.)" ( (54)
0" P 2

and we shall call ¢, M, N the functions which are harmonic and regular in S,
which on o, assume the values of L, M, N given on this surface and multiplied

1
by -Rl, and on 9, the values of L, M, N given on 0, and multiplied by R2' Ex~
pressions (53) may then be written
By (4 L . ‘\
Lot T e P 2R "’md' |

(53")

AT I U CEEHIT

. . .....,._»...‘../

and it is a question first of determining ©O; w w, so that the equations

1 52’

3
iia)72+' ‘ 2l g?)*a,,( az)+az( g;o é ‘,“ (55)
(1% + ol = 200 - &0 )

35




are identically satisfied.

Therefore we set

l.m-; 1

) 6 ‘—'21’” (2 m + 1) f_{"l‘”———i{”—""‘ X_(,,,.H) +

. o l!m.n__Rm.“ Rz 2m+1 <
vo(Q - 7t
+ #m(, m -+ I)an_ﬂ*mu \ T ) X5 .

e

P e N

. 56)
Po))H-l — 2at . (
B = }Jm (2m +1) Yy Yi,‘(.,m) +
Jem1 RInat [ R\em+t ’ .
+ :n (2 m + I)W(T) 'Y["" t=— 1,. 2’ 3. “ ‘
Based on the results of the preceding section, we will then have
J[,95+2y(u,>,_u,;)]_d,_._ S
B—p (R . o ;
—1::"—“7?«( ) [ "X, +24(y Vo 2 Yool + - . ,
i \:z o , :r 1 J2m-1 ’
T 'l.lm( m -+ l)m [) x X-(mH) + 2}1 (J Y,, —(m+ ,) -—2 Y!)—(:»+A))] + ’
["m t— 21 Dimy3 . Jongs
\ _— 3 “2 l + aX m+
+ l ]) m-y _le— R s ]{!"l+3][ ( U .
| + 2 u(al”:(""_*” _3_ Y"- "'“‘) + N B | (57)
' Oy ' 0z » ¥ B
— )',n+3 ]) LU ’ . s ’ ‘-.
+ S @m+1) 7—5':7—+( [tz X+ 200y You—2 Vol +
x l" N e ‘m -1 . ’+3 ”"4—’ 1 g1 aAm l
A e e e ] [ \
| o (2Yam an,m) !
+2p ( 7y ~ ] I
Let us then remember that, since
L PR PN |
L4 2 N — ‘
(4 14) +2 (02 ay)_.o,...
must be true, the following relationships will hold:
2p R (Yo — YY) —2pl(2Yy —y¥oy ) = 1
s , 2Yi,. z < . ‘
’ ——(?.—{-.2:.'.):17‘(113"_,—1?,;&0); "'5,—3';"'17)")-11 =123 | (58)
mis_ D 30X pm+ 2 O )
sz‘“___ 170 44 )‘ (m+1) 2 Jy-tm I) ,_ te1] l))]_
(Remss i Ry [ st g, (005t
—2 0+ — ey ey
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- (2 m —+ 1)( ')’ e (P.,m+l X, — Itme X.-(,»H) ]_._
])(R. R+t

. — (2 m + lgm+3 ["Vx Xm '1'_ 2 “ (!/ Ys;:n —_—2Zz Ys\tm)] 'T'

;I— (2 " + l) [’ z X ey +22(y YS:—(»:H — st-—(nﬂ-!))]’-_’,-

BXm

(Rt — Rty [) 2 Ys,m 3Y»,m)]_

+2(v

(58)

—92 (X + F‘) [(R’m+l R: m-H) aXm

+ (2 m + ) = (R met X ——l””“ _(..m))] —

- .re' '
—_ (2 m -+ A [A &x Xm + 2 ® (J Ys,m 2 Y‘ym)] +

+ (2 m + l) ltm-' [) IX—(m'H) + 2 u (JYS’—(:M'H) - ’Yly-(m-l l))], ‘

m=1, 2,..., ® :t

and the others which are derived from these by cycllc permutations of x, y, z /56
and the subscripts 1, 2, 3. By means of these relationships, expression (57)

may be readily written in the form

. J[)G +2p(m5—w:8) ]———dc:/ﬁ’t—{—?y(my——‘m,z)i—}'— \

lS I)3 24 l—]?l R" > y d
*2(7‘”‘)1" m-m( R-—-H] _Z‘L"FR'A")“L

1 , It — poes
+ 2 (/‘ + P') /__‘m 1{5”,_“ — lﬁm‘“ ° 1{5»:'—1 —_ l{im—. —_

s bRi‘"+3 2r+3 o o aX._(m+n
— I m}[(]{ S R;nu)_a_x_ + 57

+ (2 m + 1):c pm+ (R”"*‘ X, — lim+1 X.-(m+«))] +

! @ R’m+ t et Hem-l
‘) » 1 .
+ (’ + H n (1{";; o 1{“ n+4) 1 1 [l! 1{°m— I{Sm -1

L

H(R’"H'——R”H‘)u-—"'—}— - ‘

+(2m 4-1) lﬁ (Rim+t X, — .l"".*-’ X. (m+'))] ) ll

and the other two similar relationships are derived by cyclic permutation of
E, My T3 X, ¥,y 23 Wys Wy, g

The last terms in expression (53') are also easily formulated when we
note that from the identity
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) R "t (m 4+ 1) )it ) !

az + f—— _},m (2m + 1= e — r T X sy +
) (n 4 1) s + m Rt Roiemes » |
}— H,, @m4+1)* R.,?,,ﬂ P':"‘l“*——(l ) Xy = :
o — Pty , ' ‘ ’ (59)
% (2m+ 1) I’W‘T‘ X' _meny +
‘a: i o S - ]ﬁm{»; ]{: 2 41 _'
_i._ ‘J‘,n (2 m + ] ) j"gm.f‘ —_ I‘);_l,,,.fl (T) ”my } i
. 57
we obtain (Rim+s — R§m+')_.X’-(»n+‘) — 127
(W it] e .
= [m Rim¥ 4 (m 1) Rem 1) X_(,,,+,)+ (2m+ l)(]E L )m Xy
, 59
(R,m R p— R°m+‘) X’m - (2 7” + 1) l2m+l X,—('"‘i”') + ( )

Therefore,
grals:

, + [ Rpnt - (am
applying the results of the preceding paragraph to the inte-

o ey

+1) B+ X,,.

-+ )5 s, ..

and substituting into (53) the expressions relatlve to (57") and similar ones,

we find on__ ¢ X _Ate, ( 6) {
N 1= =3 2u6x %y + 02 2z + 61+ :
by —IXaF RXe Atz [B—R (_)_
+ 2 z 2 — I Nz mirm—m\
R X R
A.)\-, ' - __lgm—g ., . . P I
+ 2,—' J _‘m (2 m + 1) [7);‘_—-—-1-7_;;"—_—‘ X —(m+1) T
Jamts "m+3 ])a 243 , - H
24 y ) S Tty s ,\ “imal)
2 " _Jm [ mr,,:; — i R g __ )_m+3] p
X_.,, 2m -+ 1) Rt x omte Y m ]
—2 d x+l =2 (If( mty ],2"»-+l) l"‘l+: (R +e A - P +l -("“H)) +
2 S (s I gy +] Bt a\ w_ |
- aAn » 2 1 ) 2 ‘‘ mn
-2 ‘af —2 v (4 :n +1(§2,f‘) AU S ‘,\-("'.’r")]’ !/

. . .
. - - . . - . . .

The other two formulas for
cyclical interchange of
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v and w are deduced from that relative to u by
e w1’ wz! w3; x’ y’ A



Now substituting expression (53") into the first of expressions (55) and /58
utilizing the quoted relationships between 63 wl, wz, w3, we find:

+2?+%” Q+w”2{£j+ﬁy+

+3o+m(a,+e)+w>+2ma+

61?0 91—4])1
()'H‘)[F B _(Po—ﬁ.)t]R’X"—

. 6B 3R+ R)l—4R R
—(+w [1—.’§—1’3 (B R 1 ]m

m(%z-—l)]?ﬁ'"' (m+1)(2m+3R]

+

) o ( . .
\ I — :
+ () + .U’) ..nnl[ 1,'... 1 l‘:im 1 R:-‘f’ Rcm_'_s m+l]X —(m+1) _ ;\ (60)
U] /1
»1(2;"—1)]?"""‘ (m+1)(2m—+3) 1% , i
o [(Ri'"'"*—k”r"l)lfmﬂ + B3 — Rimas R X, l o
) X—- v Sn— ; 2
| —2(24u) N L Ro,,,;l(—zi,,m{ R ‘[211)1+1)R§—{—
, m(2m—1) R (R—RD .. (n-+1)2m4-3) R+ Ri— RY)
+ 1\” g Iwm 1 |1 2m + — lu’°"'+3 Rzm+; l Z‘*‘
X» i R2 it 2m—14 | ¢ 2 :
+2()+,) T m,:(T) IRI 1[2(1}1—}—1)R,+ i
(2m—1) R~ R3— K} 1Y(2m 4 3) R+ 4(I— 12 B
+ n R,,,,)_‘ Ri\(,,_i l)] Jrm+ 1[2"1_t_ (”1‘,_ (lgj‘;t’) }{am_'_(, ) l]. ii |
If then we set
Q= ‘};m 9,,, + ;m P_(m.} 1)y M= -’;;'" 9_)2”' + %J'm QR_(”"} 9y . \ \
N= gm N, + ,§;m i)z—(mi‘l) ’ “
, 61
0, — 0L, . 0 9)?,,,.“ + 0 9?...,., (61)
" aa. ] a
oe. ., . O ﬂ)?_.. 0 )I o

8. (m-H)— ax + ay + . ;\\
and in equation (60) set the terms of degree m equal to those of degree -(m +1) /59

we obtain

L —IX - ReXo
.902(6"+9F)—T‘_i-r+

R |
T 3() + F’) (1{212___-1‘3 ——l 3 )]{zXo"—

B R 2R+ R
3¢+ *‘)(R, BT R—n )m Xosy

R - .
0_(/+2y)(3 R)I(RXO I1X_),

(62)
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(Rp+t — By @, = —[2mm—1) ¢+ p) + /
+ (2 " + 1) (3 X + 2 P')] (l’m—H X—-(m-H) - R3m+1 Xm) +

(m 4 1)(m 1-2)(2m +3) Rgm+ R3— R
0o SR AN AIE AL oy, Rimi,),

’m+y 2m 41 I \ms ) ) ) i
(Rt —Ri )(p;) 0. (u3‘+:)=[“—2("l+ (m+2)2+p)+ | (62)
S+ @m A1) B+ 2] (I Xy — RimH X,) + ’

5 1 oy =)= R Ri= RD)  pyiqy - .
R ey oy G O

i
&

The second of these equations requires that
B X, —1X,=0 |
and then from the first equation (58) ar;d simiiar ones, we also find that
R Yi—1Y; =0, i=l,‘ 2, 3.
This result shows that the terms of degfee'-l in 9; 51, 52, 53 are identi-

cally zero.

Moreover, the first expression (62) gives us

O 63
X,= 31-}-2;} ' (63)

Finally, the last two equations (62) give us
AX, :[2 (m < 1) (m + 2)‘(). +¢)—2m+ .l.) BA+42p)— ‘

O wm=DEn D B (R )
() ~ (-2 — K1) I 8.

“—[2 m(m—1)0+p)+@m+1)(372+2 y)'—
(m 1) (m -+ 2) (2m + 3) B3+ (R — R} !m+1
(l + ) T )] (1{2) —(m-H))

R LA R?m,’_g

. | (64)
A X_(,,,_,_,) z'[Q(m + 1)(m +2) (). +p)-——(2m + 1)(32 4+ 2p) —

G y o (m— 1) (2m —1) 4 L’"”“- (22 — DY R\t
: (/ + %) ‘ (R St - ‘__1{1 _‘) 1{1 ](-—l—) e_m_

—-‘[2 m (m — 1 O+ +@m+1)3 7.-+ 2p) —

(n+1)(m+-2) (2 -'—3 e (Re— R | |
( l+ ) Ro,,,_r;n Px?"*’ ( R')]e (m-H)) . } l
where ' 'A=(2’”+1)’(37-+2F)(}+2”)+
_(@m—1)(2m-3)(Rudt2)*"~ ‘(Rg-—fix)’] ’ (64")
|

+ m(m—-1)(m+1)(m+2)(-+p)* [4 Tl Ry (T )
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Just as in the preceding case, it is shown that A differs from zero for
any whole and positive value of m since 3\ + 2y > 0, y > 0. It is clearly
sufficient to restrict ourselves to demonstrating the fact that expression

(2m—1) (2m -+ 3) (R Re)™ (B} — Iy

T e =R B = )

possesses this property
When Xm and X—-(m+1) are thus determined, 6 is found from the first of ex-
pressions (56).

Torﬁind wl, wz, w3, expressions (53") are substituted into the last re-
Jowy sz 3w3

lationships (55). Bearing in mind relationship =™ + — + — =0, we mean-
X oy 9z 61
while find
om oM M [ - 8
2l =y — T s ) [P+ Gk (157 o) |
1 Lo\ H1 [ - 2)(2m + 3) (o2 — 122 )+ -
'—’(/ +l"’)r<.“' 1,4,,,_| .’___Im( l ) 1):;;3 —"I'z'l-m:T*——— Lzﬂl!'—”l **4] 1{. +lX -_— >
_— (65)
— et 1 (m—1)(2m—1)Rule. " Y R;— 1))
l lX-""'{“l)) {— (’ +F) .-.‘m lc"m,',’ R‘i‘m.H (]8"’!—’ ’nf—g)l;mdq 2 - +
:  —%m'—5m + l] (Ri‘"*‘X,,,—l""*’X-(,,,.“))z . )

The other two formulas relative to 52 and 53 are deduced from the written one

by, as usual, having been expanded by cyclic permutation of ¢, M, %; %, ¥, z:| -
Hence we divide by 7, integrate, and note that the arbitrary function introduced
by integration reduces to a constant, since it must be harmonic and regular

in S and independent of 1. Because

*%;J.(%*m)zmz;ﬂj* ) de=|EM—yN)ds==0(}
o . ;, .

0z

and the terms of zero degree in & y» are zero, a harmonic and regular

10 895 @

* It is therefore suff1c1ent to note that
f(ﬂ M- y \’)d—w[('!‘cosn‘. —ﬂcos':_/)dc=

» 0 o
aMm au) ' (am. asz.)
— [(¢¥ _ 0NV ys o, ds
(a. 0y r
and to perform the 1ntegratlon with respect to p, bearing in mind that, by

virtue of the reciprocity theorem of the spherical functions, one term alone
differs from zero.
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function exists, with at least one arbitrary constant, in S of form

J‘ﬂ (?ﬂ_?}ﬁ- “)
! \dy 0
We may write v #

T on

2}‘5‘1:.{(2_1@1:—%’;:)“"(3/30_ 4 )l(27+y)1-—6+(,+ p) 8 —
) ‘?‘m Ryt — . — I +1(1: )'""“ (’" + 2:’1((21’;.‘"‘_*“};3-)-(22:?)1{.)12"“ b + :
gﬁ’—m:f%—] (Rt X, —Un 1 X_ ) +
b e [ R

n 2 1.2 +’;’: m— l] (Rj”‘+’X,.. Sy 177 31 X—(m-l—i))} 4 h, ’

. - . . - - K3 . . - - - . - - .

h,, h

12 hys By three arbitrary constants.

indicating by h

(65")

Let us also note that in

the preceding formulas we may assume the terms of zero degree in 06 to be zero,

since 6 in expression (65) appears only under derivative signs.

We may thus

consider that de 8 also represents a very definite function which is harmonic

[/

and regular in S.

The values of u, v, w still remain to be determined.
begin by noting that expressions (53') may be written:

’3_“_? 2 7+y

RN SRS T T S
FAE s S OANCHAD pe X, bt X )
)‘+" 2mR’"i:”+}.?IM+Ai_.2+ |
e D e i
L N
P Jemt— (1’]'"::’)—1-'?’; ff;f?: ’P'—L.)]a (R, — pnbs X (m“)) 4
ET put ;",,,[p_
(1’,1’2)’( R m-;,i_'_‘_ﬁ m;;)j:l:m* NIt Lk )] Pa)’ "+’aa Z (Bt X, I X ('”+’))

. . . . . L] . . .

*

We may therefore

|

(53||v)

In the contrary case, as results when we consider the expansion of any

function harmonic in S into a series of spherical functions, integration intro-

duces a term of form fd
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from which by dividing by 7 and integrating, we derive 63

2”*] —,—J'edz_u( o dl— —fa.dl) !
—(*+pze 4+ + )X, +
04z )@ S LTSS Ny X — 8 X _(gn) +

])lm'f-( k:m-’-‘

+(>-+y)x2m————,2’”+’ 24

m+‘_ }‘lm'fi m . |

+ (m +2)0 3= RY)— (mA-1)(Ry R R 1 — P”"’ﬁ] (_].?E)MH(R'.”“*‘X,,,— ' ':

| (m+l) (]um s R?m-fs) I3 l ‘ (66)
—]mEr YW )W m—1 i .
I ‘-X—(m+l)) —{—(2 —f—[a) é:l’" 1.‘»,;,,,“__ Pt [_ m+ 1 + )

IR R - (n— )RS R— RY) N
+ m ('n — l) (]‘);m-( —_ R:m—‘) lgm-f‘ J a—i(R‘,' '.Xm —

2n ¢ \ . g . m- 2 5
— X ) ’I"("+F)£\J’"1TMTT———W[—F+.

L A DRI B ) — A QB R (R D
+ (m + 1) (m + 2)(T+s — R *3) ]( ,) Py —(RHX,—

.__:_ l!m-l»l X—(m-}-l)) + k"

————————,

Let us now make the following observations concerning these formulas.

Since ‘
RJoerr—]edr_dec—o,

i i .
we may consider that f—— ¢ | represents a function which is harmonic and regular

in S and very determinate. Since the terms of degree -1 in 0; wl, 2, 63 are
zero, the expressions i-f edl; E-f di, ... will represent harmonic functions
1° h2, h3. Finally, kl,

kz, k3, as biharmonic functions regular in S and independent of 1, are arbitrary

as above; © By 5 wz, w3 contain the arbltrary constants h

constants.

6. Cases in Which Other Conditions Are Given on the Limiting Spheres.
Taking due advantage of formulas (48) and (66), we will be able, without great
difficulty, to solve the problems in which the components of the displacements /64
along one of the coordinate axes and the stress components along the other two
coordinate axes, or the displacement components along two coordinate axes and
the stress components along the other coordinate axis, are given on the two
spherical surfaces. It would therefore help us to bear in mind our procedure
in report I to solve similar problems for the full sphere.

Based on procedures similar to the preceding ones, all those problems in
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which there are different conditions —- and conditions similar to those

to which we have already alluded —-- for the case of the body limited by two
parallel planes, are given on the two spherical surfaces. We would then have
to make use of the harmonic function which assumes given values on a spherical
surface, while on the other spherical surface the normal derivative assumes
assigned values.*

Finally, let us also allude to the problems in which the normal displace-
ments and tangential stresses -- or vice versa, the normal stresses
and the tangential displacements ~- are given on two spherical surfaces. Let
us also refer to the problems in which the normal displacements and tangential
stresses are given on one spherical surface, and on the other -- the normal
stresses and the tangential displacements. These problems which may be solved
by bearing in mind the procedure which we followed to treat similar problems
for the entire sphere in the last subsection of another publication (Memoria
del Circolo matematicale di Palermo, Vol. 17, 1903).
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* Or, even more simply, we could continue to start with expressions (48) and
follow the general method advanced by Thomson, which consists of methodically
applying the obvious observation that any biharmonic function regular in S is
the sum of a harmonic function which on the surface assumes the same values of
the biharmonic function and of a biharmonic function which becomes zero on the
surface. 1If, for example, the values of displacements on 9y and of stresses on

o, are given, the values of Um, Vm’ Wm are determined only in part. They will
be completely determined by subjecting the biharmonic functions A6x + 2u(1%% +
&3 y - mzz), +.. to the assumption of given values on Oy To satisfy these

conditions, the preceding biharmonic functions will be formulated, and the terms
will be neglected which become zero on the surface in order to have a harmonic
function . The problem will then be simplified and easily solved.
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